Ground-truth and Data Synthesis of Simulated DW-MRI Brain Data Sets for Quantitative Evaluation of Estimated Fiber Orientations

Establishment of simulation ground-truth

A 28-year-old right-handed male volunteer without any history of neurological disease was scanned on a GE 3T HDxt scanner (General Electric, Milwaukee, WI, USA), equipped with an 8-channel head coil. The subject signed an informed consent form for which the imaging protocol was approved by the Institutional Review Board of the University of Southern California.

A DW data set was acquired by a twice-refocused pulsed-gradient spin-echo (PGSE) sequence with TE/TR = 83.4 ms/16100 ms, acquisition matrix = 128x128, ASSET acceleration factor of 2, voxel size = 2.4x2.4x2.4 mm, 60 contiguous slices, 150 diffusion gradient directions with diffusion-weighting *b* = 1000 s/mm², and 10 non-diffusion weighted volumes. The acquisition took approximately 43 minutes.

Without eddy-current or motion correction¹ the diffusion data set was processed by the probabilistic multi-fiber "ball and stick" method implemented in the program 'bedpostx', a part of the diffusion toolbox in the FMRIB Software Library (FSL v5.0.2.2; http://www.fmrib.ox.ac.uk/fsl; Behrens et al., 2003; Smith et al., 2004). Up to three fibers were estimated per voxel. To reduce the possibility of false minor fibers resulting from data over-fitting, a threshold of 0.1 was applied to second and third fiber volume fractions. Images of number of fibers/voxel were inspected to ensure known crossing regions (as explored later in Sect. 3.5) retained 2 or 3 fibers after thresholding.

Our synthetic DW data sets are derived from the fiber volume fractions (f_1, f_2, f_3) and orientations (v_1, v_2, v_3) estimated for each voxel and output by 'bedpostx'. Because of differences between the "ball and stick" model and our data synthesis equation, Eq. (1), the isotropic compartment fraction (f_0) was not used. Instead, the fiber fractions were normalized $(\sum_{k=1}^{3} f_k = 1)$ and f_0 was iteratively determined per voxel: beginning with $f_0 = 0, f_0$ was gradually increased until the generalized fractional anisotropy (GFA) (Tuch, 2004) of the synthetic data reduced to within 0.00005 of the GFA of the corresponding *in-vivo* data.

Anatomical T_1 -weighted SPGR images (TE/TR = 2.856 ms/7 ms) were acquired with a voxel size of 1x1x1 mm. The anatomical volume was registered to the mean non-diffusion weighted volume and subsequently segmented into white-matter (WM), gray-matter (GM) and cerebrospinal fluid (CSF) using default options in SPM (SPM v8; http://www.fil.ion.ucl.ac.uk/spm; Friston et al., 1995). The high-resolution tissue probability maps were then down-sampled by linear interpolation to the resolution of the DW data, and each voxel was classified as WM, GM, or CSF according to its most probable tissue type.

Diffusion-weighted data synthesis

Diffusion-weighted data were synthesized according to a multi-tensor model (Alexander et al., 2001; Tuch et al., 2002) accommodating three crossing fibers per voxel in addition to a free-diffusion compartment. For any given voxel the signal model is:

$$S(b, \boldsymbol{g}_{j}) = S_{0}[f_{0} \exp(-bD_{0}) + (1 - f_{0})\sum_{k=1}^{3} f_{k} \exp(-b\boldsymbol{g}_{j}^{T}\boldsymbol{D}_{k}\boldsymbol{g}_{j})]$$
(1)

where S_0 simulates T_2 -weighting, f_0 and D_0 are the volume fraction and diffusivity, respectively, of the isotropic free-diffusion compartment, f_k and D_k are the volume fraction and diffusion tensor, respectively, of the k^{th} fiber in

¹ The diffusion-weighted data was inspected for eddy-current and motion related artifacts, and only minor artifacts were found. Even so, we evaluated eddy-current correction but the post-processing caused smoothing of the data which we considered detrimental to resolving crossing-fibers.

the voxel, *b* is the diffusion-weighting, and g_j is a unit vector representing the j^{th} gradient direction. Altogether the volume fractions satisfy $f_0 + (1 - f_0) \sum_{k=1}^3 f_k = 1$.

Each fiber's diffusion tensor, D_k , was computed by rotating a default single tensor, D_x . That is $D_k = R_x(v_k)D_xR_x(v_k)^T$, where v is a vector defining the desired fiber orientation, $R_x(v)$ is the rotation matrix that aligns the vector $x = [1 \ 0 \ 0]^T$ oriented along the x-axis to v, and D_x is the single-fiber tensor model with diffusivities in orthogonal directions given by $\lambda_{1,2,3}$.

$$R_{x}(v) = \frac{(x+v)(x+v)^{T}}{(x^{T}v+1)} - I$$
(2)

$$\boldsymbol{D}_{\boldsymbol{X}} = \begin{bmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & \lambda_3 \end{bmatrix}$$
(3)

Complex Gaussian noise was added to the synthesized signal, *S*, to achieve a Rician distribution of noisy magnitude diffusion data (Gudbjartsson and Patz, 1995):

$$E(b, \boldsymbol{g}_j) = \sqrt{\left(S(b, \boldsymbol{g}_j) + \frac{n_1}{\sqrt{2}}\right)^2 + \left(\frac{n_2}{\sqrt{2}}\right)^2} \tag{4}$$

where n_1 and n_2 are independent and identically distributed Gaussian random variables with zero mean and standard deviation $\sigma_n = \mu_{S_0}/SNR$, in which μ_{S_0} is the mean signal from a homogeneous white-matter region of the S_0 non-diffusion weighted image, and *SNR* is the desired signal-to-noise ratio of the magnitude image, *E*.

References

Alexander, A. L., Hasan, K. M., Lazar, M., Tsuruda, J. S., & Parker, D. L. (2001). Analysis of partial volume effects in diffusion-tensor MRI. *Magnetic Resonance in Medicine*, 45(5), 770-780.

Behrens, T. E. J., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H., Nunes, R. G., Clare, S., Matthews, P.M., Brady, J.M., & Smith, S. M. (2003). Characterization and propagation of uncertainty in diffusion-weighted MR imaging. *Magnetic Resonance in Medicine*, *50*(5), 1077-1088.

Friston, K., Ashburner, J., Frith, C. D., Poline, J. B., Heather, J. D., & Frackowiak, R. S. (1995). Spatial registration and normalization of images. *Human brain mapping*, *3*(3), 165-189.

Gudbjartsson, H., & Patz, S. (1995). The Rician distribution of noisy MRI data. *Magnetic Resonance in Medicine*, *34*(6), 910-914.

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., ... & Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. *NeuroImage*, *23*, S208-S219.

Tuch, D. S., Reese, T. G., Wiegell, M. R., Makris, N., Belliveau, J. W., & Wedeen, V. J. (2002). High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. *Magnetic Resonance in Medicine*, *48*(4), 577-582.

Tuch, D. S. (2004). Q-ball imaging. Magnetic Resonance in Medicine, 52(6), 1358-1372.